

IFC 300 Technical Datasheet

Signal converter for electromagnetic flowmeters

- All-round signal converter matches almost any application requirement
- Reliable measurements with extensive diagnostics of device and application
- Wide range of communication options including PROFINET

The documentation is only complete when used in combination with the relevant documentation for the flow sensor.

1_	Product features	3
	1.1 The versatile solution	c
	1.2 Options and variants	
	1.3 Possible scope of delivery for signal converter / flow sensor	
	1.4 Measuring principle	
	1.4 Measuring principle	7
2	Technical data	10
	2.1 Technical data	
	2.2 Dimensions and weight	
	2.2.1 Housing	
	2.2.2 Mounting plate of field housing	
	2.2.3 Mounting plate of wall-mounted housing	
	2.3 Flow tables	26
3	Installation	28
	3.1 Intended use	
	3.2 Installation specifications	
	3.3 Mounting of the compact version	
	3.4 Mounting the field housing, remote version	
	3.4.1 Pipe mounting	
	3.4.2 Wall mounting	
	3.5 Mounting the wall-mounted housing, remote version	
	3.5.1 Pipe mounting	
	3.5.2 Wall mounting	32
4	Electrical connections	33
	4.1 Important notes on electrical connection	33
	4.2 Preparing the signal and field current cables (except TIDALFLUX)	
	4.2.1 Signal cable A (type DS 300), construction	
	4.2.2 Length of signal cable A	35
	4.2.3 Signal cable B (type BTS 300), construction	
	4.2.4 Length of signal cable B	
	4.3 Connecting the signal and field current cables (except TIDALFLUX)	
	4.3.1 Connection diagram for flow sensor, field housing	38
	4.3.2 Connection diagram for flow sensor, wall-mounted housing	
	4.3.3 Connection diagram for flow sensor, 19" rack-mounted housing (21 TE)	
	4.4 Electrical connection only for TIDALFLUX 2000	
	4.5 Connecting power - all housing variants	
	4.6 Inputs and outputs, overview	
	4.6.1 Combinations of the inputs/outputs (I/Os)	
	4.6.2 Description of the CG number	
	4.6.3 Fixed, non-alterable input/output versions	
	4.6.4 Alterable input/output versions	48
5	Notes	49

1.1 The versatile solution

The **IFC 300** is a very complete signal converter, featuring a wide range of variants and options to match almost any application requirements in process industries.

The robust and reliable signal converter is compatible with almost any OPTIFLUX, WATERFLUX, TIDALFLUX and OPTIPROBE flow sensor. Its measurement performance is excellent even in more difficult applications like mediums with low conductivity or mediums with high solid content or entrained air, corrosive and or abrasive mediums. The signal converter is approved to a wide range of custody transfer regulations (OIML, MID).

The IFC 300 is designed according to the unified General Device Concept (GDC) that is used for the volume flow, mass flow and analysis converters. The design concept offers an uniform user interface and menu structure and also an uniform electronics suitable for various housings, uniform device and process diagnostics functions and uniform communication interfaces. This offers great time and cost benefits with regard to procurement, engineering, operation and servicing.

The IFC 300 signal converter provides a largest variety of flowmeter and process diagnostic functions guaranteeing reliable measurements. Detection of deposits or coating on the electrodes, temperature and conductivity changes in the medium, gas bubbles or solids, and an empty pipe are good examples of process diagnostics functions. The flow velocity and volume can be read from the display or in analogue form via the current output (4...20 mA) as well as by frequency or pulse outputs. Measuring values and diagnostic information can be transmitted via field bus interfaces including HART[®], RS485 Modbus, FOUNDATION™ Fieldbus, PROFIBUS[®] and PROFINET IO.

(signal converter in compact housing)

- ① Large graphic display with backlit with graphics
- ② Configuration with infrared interface for reading and writing all parameters (option)
- 3 4 push buttons or 4 optical keys for operator control without opening the housing
- 4 Intuitive navigation and quick setup menu in 18 operating languages
- (5) Any combination of up to 4 outputs and inputs
- ⑥ Communication interfaces including HART®, Modbus, FOUNDATION™ Fieldbus, PROFIBUS® and PROFINET IO

Virtual reference

Electromagnetic flowmeters featuring virtual reference offer an innovative grounding method that allows the flow sensor to be installed in any pipe, without grounding rings or grounding electrodes.

Highlights

- For operation with complete OPTIFLUX, WATERFLUX, TIDALFLUX and OPTIPROBE flow sensor line
- For flow sensors over a diameter range of DN2.5...3000 / NPS1/10...120
- Continuous measurement of volume flow and flow velocity Integrated conductivity measurement, mass flow (at constant density) and coil temperature
- High measuring accuracy and long-term stability: ±0.15% of measured value ± 1 mm/s
- Optimal zero point stability independent from product properties
- Power supply via 100...230 VAC (standard) or 24 VDC or 24 VAC/DC (optional)
- Superior process reliability thanks to standard integrated diagnostics: testing of device functions, check for compliance with specifications and application testing
- Available inputs and outputs: Current output (including HART®), pulse/frequency output, status output, control input and current input
- Communication interfaces for integration into third party systems via HART[®] (as standard), Modbus, FOUNDATION™ Fieldbus, PROFIBUS[®] and PROFINET IO
- Wide range of custody transfer approvals including OIML R49-1 and R117-1, MI-001, MI-004 and MI-005

Industries

- Chemicals
- Water & Wastewater
- Machinery
- Pulp & Paper
- Minerals & Mining
- Food & Beverage
- Oil production & Refineries
- HVAC, energy management
- And many more

Applications

- · Volume flow measurements, process control and monitoring, blending, batching
- · Mediums with low conductivity, high solid content or entrained air
- Sudden change in pH value
- · Pulsating or turbulent flows
- Abrasive sludge and slurries, pastes
- Wide range of corrosive chemicals
- (Sea)Water flow measurements in a wide range of industries
- Well water injection
- Custody transfer

1.2 Options and variants

(signal converter in compact housing)

(signal converter in field housing)

(signal converter in wall-mounted housing)

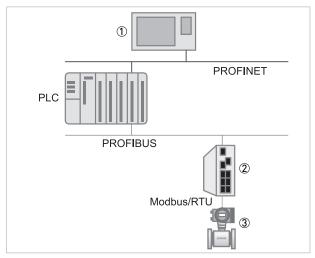
(signal converter in rack-mounted housing)

Compact or remote housing variants

The IFC 300 signal converter is available in four housing variants, of which one compact design and three remote designs.

Next to a field housing there is a wall-mounted housing and a 19" rack mounted housing.

The wall mounted signal converter can be installed remotely for locations where the flow sensor is difficult to access, or ambient temperature conditions or vibrations prevent a compact variant.

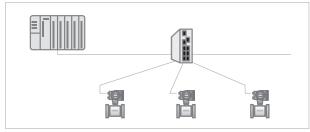

The signal converter in the 19" built rack mounted housing is typically used in a central control room.

IFC 300 for hazardous areas

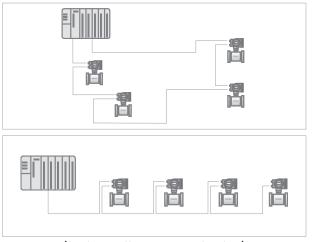
The compact and field housing versions of the IFC 300 signal converter are available in a variant suitable for hazardous areas with approvals to for example ATEX, IECEx, UKEx, IA, FM, CSA, QPS, NEPSI, KCS, PESO and DNV.

IFC 300 in stainless steel housing (option)

Whereas the standard housing material for the IFC 300 is die-cast aluminium with a polyester topcoat, the compact and the field version of the IFC 300 can optionally be ordered in a stainless steel housing. The robust housing is suitable for many applications in more harsh process environments.


- Monitoring system
- ② Gateway
- ③ Flowmeter

Communication options

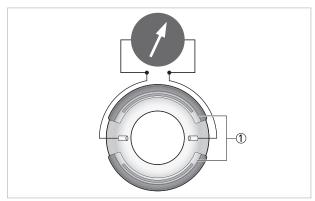

The basic signal converter variant covers a current output including HART[®], pulse/ frequency output, status output, control input and a current input.

The modular input/output variant allows for any combination of up to four inputs and outputs. All inputs and outputs are galvanically isolated from each other and from the rest of the electronic equipment. Inputs and outputs can be passive or active.

In addition, the electronics can be equipped with fieldbus functionality including Foundation Fieldbus, Profibus PA/DP, Modbus or PROFINET IO to enable communication to any third party system.

(1. point-to-point or star communication)

(2. ring or line communication)


PROFINET IO option

With PROFINET IO, real time Ethernet can be connected to IoT scenarios.

The use of existing, legacy, industry-grade devices (e.g. PROFINET flow tubes, actuators and Programmable Logic Controllers (PLC's)) enables a new architecture to be used across the Internet.

An unique network topology:

- 1. Working with point-to-point or star communication using a single Ethernet port and an external switch.
- 2. Using ring or line communication there are two Ethernet ports available controlled by an internal switch.

(Resistance measurement)
① Coils

Extensive diagnostics of the device and application

The primary focus of a user for a flowmeter is that it delivers reliable and robust measurements. To achieve this all electromagnetic flowmeters are calibrated before leaving the factory.

In addition, KROHNE was one of the first to introduce extensive diagnostic features.

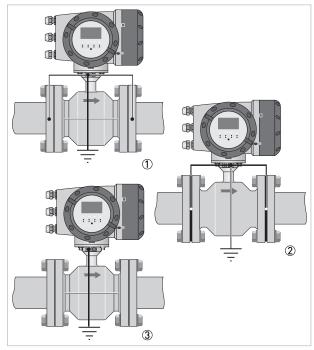
The IFC 300 provides a wide range diagnostic functions on the flow sensor, signal converter and process integrated in the signal converter.

The IFC 300 automatically performs an online cyclical verification to determine whether the measuring device is still within its specifications regarding accuracy and linearity.

Potential problems that may occur in the process including gas bubbles, solids, electrode corrosion, deposits on electrodes, conductivity changes, empty pipe, partial filling of the flow sensor, disrupted flow profiles.

External magnetic fields can be detected by the IFC 300 diagnostics features. Diagnostic info available via local display, status outputs, Fieldbuses, PACTware or the OPTICHECK.

(Suitcase with OPTICHECK and all cables and accessories)


OPTICHECK tool for on-site verification

The OPTICHECK provides an inline health check of the device under test by an external tool. When the tool is connected on site, it gathers measuring data to ensure that the flowmeter performs within 1% of its factory calibration.

The baseline can be historic repair data from the factory or on-site test results after performing a full verification.

A hard copy of the verification report can be printed for every flowmeter. The verification data are digitally stored.

Contact us for more information or for an on-site service visit.

- ① Metal pipes (no grounding rings)
- ② Non metal pipes (with grounding rings)
- ③ Virtual reference option (no grounding rings)

Virtual reference option simplifies installation

Based on a special method, developed by KROHNE, called virtual reference or grounding, electromagnetic flowmeters can be installed in any type of pipeline, without grounding rings or electrodes.

The virtual reference option on the IFC 300 provides complete isolation of the signal converters input amplifier and coil power circuits.

It is ideal for applications in the water and wastewater industry where large diameters are common or in case of abrasive or corrosive application that require rings of expensive materials. In these case the costs for grounding rings can be substantial.

Virtual reference also increases safety as it decreases the number of potential leakage points.

Furthermore it is no longer necessary to select the right grounding ring (material) and reduces the risk of wrong installation of grounding rings and gaskets.

1.3 Possible scope of delivery for signal converter / flow sensor

Flow sensor	Flow sensor + signal converter IFC 300				
	Compact version	Remote field housing	Remote wall- mounted housing	Remote rack-mounted housing	
OPTIFLUX 1000	OPTIFLUX 1300 C	OPTIFLUX 1300 F	OPTIFLUX 1300 W	OPTIFLUX 1300 RL	
OPTIFLUX 2000	OPTIFLUX 2300 C	OPTIFLUX 2300 F	OPTIFLUX 2300 W	OPTIFLUX 2300 RL	
OPTIFLUX 4000	OPTIFLUX 4300 C	OPTIFLUX 4300 F	OPTIFLUX 4300 W	OPTIFLUX 4300 RL	
OPTIFLUX 5000	OPTIFLUX 5300 C	OPTIFLUX 5300 F	OPTIFLUX 5300 W	OPTIFLUX 5300 RL	
OPTIFLUX 6000	OPTIFLUX 6300 C	OPTIFLUX 6300 F	OPTIFLUX 6300 W	OPTIFLUX 6300 RL	
OPTIFLUX 7000	OPTIFLUX 7300 C	-	-	-	
WATERFLUX 3000	WATERFLUX 3300 C	WATERFLUX 3300 F	WATERFLUX 3300 W	WATERFLUX 3300 RL	
TIDALFLUX 2000	-	TIDALFLUX 2300 F	-	-	
OPTIPROBE	OPTIPROBE 300 C	OPTIPROBE 300 F	OPTIPROBE 300 W	-	

Table 1-1: Signal converter/flow sensor combination possibilities

1.4 Measuring principle

An electrically conductive fluid flows inside an electrically insulated pipe through a magnetic field. This magnetic field is generated by a current, flowing through a pair of field coils. Inside of the fluid, a voltage U is generated:

U = v * k * B * D

in which:

v = mean flow velocity

k = factor correcting for geometry

B = magnetic field strength

D = inner diameter of flowmeter

The signal voltage U is picked off by electrodes and is proportional to the mean flow velocity v and thus the flow rate Q. A signal converter is used to amplify the signal voltage, filter it and convert it into signals for totalizing, recording and output processing.

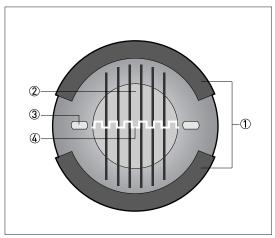


Figure 1-1: Measuring principle

- ① Field coils
- ② Magnetic field
- 3 Electrodes
- 4 Induced voltage (proportional to flow velocity)

2.1 Technical data

- The following data is provided for general applications. If you require data that is more relevant to your specific application, please contact us or your local sales office.
- Additional information (certificates, special tools, software,...) and complete product documentation can be downloaded free of charge from the website (Downloadcenter).

Measuring system

Measuring principle	Faraday's law of induction
Application range	Continuous measurement of current volume flow, flow velocity, conductivity, mass flow (at constant density), coil temperature of the flow sensor

Design

Design			
Modular design	The measuring system consists of a flow sensor and a signal converter.		
Flow sensor			
OPTIFLUX 1000	DN10150 / NPS3/86		
OPTIFLUX 2000	DN253000 / NPS1120		
OPTIFLUX 4000	DN2.53000 / NPS1/10120		
OPTIFLUX 5000	Flange: DN15300 / NPS1/212 Sandwich: DN2.5100 / NPS1/104		
OPTIFLUX 6000	DN2.5150 / NPS1/106		
OPTIFLUX 7000	Flange: DN25100 / NPS14 Sandwich: DN25100 / NPS14		
	This capacitive flowmeter is only available as compact version (OPTIFLUX 7300 C).		
WATERFLUX 3000	DN25600 / NPS124		
TIDALFLUX 2000	DN2001600 / NPS864		
	This flow sensor for measurements in partly filled pipelines is only available as a remote field housing version (TIDALFLUX 2300 F).		
OPTIPROBE	DN803200 / NPS3128		
	This insertion type flow sensor is available in two models. Model A has a fixed insertion length of 25 mm / 1". Model B has a varying insertion length of 25400 mm / 115.7".		
	With the exception of the OPTIFLUX 1000 and WATERFLUX 3000 all flow sensors are also available as Ex versions.		
Signal converter			
Compact version (C)	OPTIFLUX x300 C (x = 1, 2, 4, 5, 6, 7) or WATERFLUX 3300 C or OPTIPROBE 300 C		
Field housing (F) - remote version	IFC 300 F		
	Compact and field housing versions are also available as Ex versions.		
Wall-mounted housing (W) - remote version	IFC 300 W		
Rack-mounted housing (RL) - remote version	IFC 300 RL		

Options			
Outputs / inputs	Current output (including HART®), pulse output, frequency output and/or status output, limit switch and/or control input or current input (depending on the I/O version)		
Totaliser	2 (optional 3) internal counters with a max. of 10 counter places (e.g. for counting volume and/or mass units)		
Verification	Integrated verification, diagnostic functions: measuring device, process, measured value, empty pipe detection, stabilisation		
Communication interfaces	HART®, Foundation Fieldbus, Profibus PA and DP, PROFINET IO, Modbus		
Display and user interface			
Graphic display	LC display, backlit white.		
	Size: 128 x 64 pixels, corresponds to 59 x 31 mm = 2.32" x 1.22"		
	Display module can be positioned/rotated in 90° increments.		
	Ambient temperatures below -25°C / -13°F, may affect the readability of the display.		
Operating elements	4 push buttons or 4 optical keys for operator control of the signal converter without opening the housing.		
	Infrared interface for reading and writing all parameters with IR interface (option) without opening the housing.		
Remote control	PACTware TM (including Device Type Manager (DTM))		
	HART® Hand Held Communicator from Emerson Process		
	AMS [®] from Emerson Process		
	PDM [®] from Siemens		
	All DTMs and drivers are available free of charge from the manufacturer's website.		
Display functions			
Operating menu	Setting the parameters using 2 measured value pages, 1 status page, 1 graphics page (measured values and graphics are freely adjustable)		
Language of display texts (as	Standard: English, French, German, Dutch, Portuguese, Swedish, Spanish, Italian		
language package)	Eastern Europe: English, Slovenian, Czech, Hungarian		
	Southern Europe: English, Turkish		
	Northern Europe: English, Danish, Polish, Finnish, Norwegian		
	China: English, German, Chinese		
	Russia: English, German, Russian		
Units	Metric, British and US units selectable as required from lists for volume/mass flow and counting, flow velocity, electrical conductivity, temperature, pressure		

Measuring accuracy

Reference conditions	Depending on the flow sensor version.	
	Refer to the technical data of the flow sensor.	
Maximum measuring error	±0.15% of the measured value ±1 mm/s, depending on the flow sensor.	
	For further information refer to the technical data of the respective flow sensor.	
	Current output electronics: ±5 µA	
Repeatability	±0.06% according to OIML R117 Not valid for WATERFLUX 3000, OPTIFLUX 7000, TIDALFLUX 2000 and OPTIPROBE	

Operating conditions

Temperature			
Process temperature	Refer to the technical data of the flow sensor.		
Ambient temperature	Depending on the version and combination of outputs.		
	It is advised to protect the signal converter from external heat sources such as direct sunlight as higher temperatures reduce the life cycle of electronic components.		
	-40+65°C / -40+149°F		
	Ambient temperatures below -25°C / -13°F, may affect the readability of the display.		
Storage temperature	-50+70°C / -58+158°F		
Pressure			
Medium	Refer to the technical data of the flow sensor.		
Ambient pressure	Atmosphere: height up to 2000 m / 6561.7 ft above sea level		
Chemical properties			
Electrical conductivity	Standard Electrical conductive liquids in general: ≥ 1 µS/cm Demineralised water: ≥ 20 µS/cm		
	TIDALFLUX 2000 All media: ≥ 50 µS/cm (also refer to the technical data of the flow sensor)		
	OPTIFLUX 7000 All media except for water: ≥ 0.05 µS/cm (also refer to the technical data of the flow sensor) Demineralised water: ≥ 1 µS/cm		
Type of measurement	Electrical conductive liquids		
Solid content (volume)	Up to 70% for OPTIFLUX flow sensors and up to 20% for TIDALFLUX 2000 flow sensors		
	The greater the solid content, the less accurate the measurements!		
Gas content (volume)	Up to 5% for OPTIFLUX and TIDALFLUX 2000 flow sensors		
	The greater the gas content, the less accurate the measurements!		
Flow	For detailed information, refer to chapter "Flow tables".		
Other conditions			
Ingress protection according to IEC 60529	C (compact version) & F (field housing): IP66/67 (according to NEMA 4/4X/6)		
	W (wall-mounted housing): IP65/66 (according to NEMA 4/4X)		
	RL (rack-mounted housing (21 TE)): IP20 (according to NEMA 1); Use: Indoor only, level of pollution 2 and relative humidity < 75%		

Installation conditions

Installation	For detailed information, refer to chapter "Installation".
Inlet / outlet sections	Refer to the technical data of the flow sensor.
Dimensions and weight	For detailed information refer to chapter "Dimensions and weight".

Materials

Signal converter housing	Standard
	Version C and F: die-cast aluminium powder coated (Epoxy primer and Polyester topcoat)
	Version W: polyamide
	Version RL (21 TE): aluminium and aluminium sheet, partially polyester-coated
	Option
	Versions C and F: stainless steel 1.4408 / 316
Flow sensor	For housing materials, process connections, liners, grounding electrodes and gaskets, refer to the technical data of the flow sensor.

Electrical connection

General	Electrical connection is carried out in conformity with the VDE 0100 directive "Regulations for electrical power installations with line voltages up to 1000 V" or equivalent national regulations.		
Power supply	Standard: 100230 VAC (-15%), 50/60 Hz 240 VAC + 5% is included in the tolerance range.		
	Option 1: 1224 VDC (-55% / +30%) 12 VDC - 10% is included in the tolerance range.		
	Option 2: 24 VAC/DC (AC: -15% / +10%, 50/60 Hz; DC: -25% / +30%) 12 V is not included in the tolerance range.		
Power consumption	AC: 22 VA		
	DC: 12 W		
Signal cable	Only for remote versions.		
	DS 300 (type A) Max. length: 600 m / 1968 ft (depending on electrical conductivity and flow sensor version)		
	BTS 300 (type B) Max. length: 600 m / 1968 ft (depending on electrical conductivity and flow sensor version)		
	Type LiYCY (only FM, Class 1 Div. 2) Max. length: 100 m / 328 ft (depending on electrical conductivity and flow sensor version)		
Interface cable (only TIDALFLUX 2000)	Type LiYCY Max. length: 600 m / 1968 ft (3 x 0.75 mm ² shielded cable)		
Cable entries (except TIDALFLUX 2000)	Standard: M20 x 1.5 (812 mm) for C, F and W version; Terminal strip for R version		
	Option: 1/2 NPT, PF 1/2 for C, F and W version		
Cable entries (only	Standard: 2x M20 x 1.5 + 2x M16 x 1.5 EMC type		
TIDALFLUX 2000)	Option: 1/2 NPT		

Inputs and outputs

General	All outputs are electrically isolated from each other and from all other circuits.			
	All operating data and output values can be adjusted.			
Description of used abbreviations	· · · · · · · · · · · · · · · · · · ·			
	Safety limit values (Ex i): $V_i = \max$ input voltage; $I_i = \max$ input current; $P_i = \max$ input power rating; $C_i = \max$ input capacity; $L_i = \max$ input inductivity			
Current output				
Output data	Volume flow, mass flow, diagnostic value, flow velocity, coil temperature, conductivity		velocity, coil temperature,	
Settings	Without HART®			
	Q = 0%: 015 mA; C	Q = 100%: 1020 mA		
	Error identification:	322 mA		
	With HART®			
	Q = 0%: 415 mA; C	Q = 100%: 1020 mA		
	Error identification:	3.522 mA		
Operating data	Basic I/O	Modular I/O	Exil/0	
Active	V _{int, nom} = 24 VDC		V _{int, nom} = 20 VDC	
	I ≤ 22 mA		I ≤ 22 mA	
	$R_{L} \le 1 k\Omega$		$R_{L} \leq 450 \Omega$	
			$V_0 = 21 \text{ V}$ $I_0 = 90 \text{ mA}$ $P_0 = 0.5 \text{ W}$ $C_0 = 90 \text{ nF} / L_0 = 2 \text{ mH}$ $C_0 = 110 \text{ nF} / L_0 = 0.5 \text{ mH}$ Linear characteristics	
	Observe connection polarity.			
Passive	V _{ext} ≤ 32 VDC		V _{ext} ≤ 32 VDC	
	I ≤ 22 mA		I ≤ 22 mA	
	$V_0 \ge 1.8 \text{ V}$		$V_0 \ge 4 V$	
	$R_L \le (V_{ext} - V_0) / I_{max}$	ах	$R_L \leq (V_{ext} - V_0) / I_{max}$	
			$\begin{aligned} V_i &= 30 \text{ V} \\ I_i &= 100 \text{ mA} \\ P_i &= 1 \text{ W} \\ C_i &= 10 \text{ nF} \\ L_i &\sim 0 \text{ mH} \end{aligned}$	
	Observe connection	polarity.	Any connection polarity.	
	1			

HART®					
Description	HART® protocol via a	HART® protocol via active and passive current output			
	HART® version: 5	HART® version: 5			
	Universal HART® par	Universal HART® parameter: completely integrated			
Load	≥ 230 Ω at HART [®] test point; Note maximum load for current output!				
Multi-Drop operation	Yes, current output =	Yes, current output = 4 mA			
	Multi-Drop address a	Multi-Drop address adjustable in operation menu 115			
Device drivers	Available for FC 375/4	475, AMS, PDM, FDT/DTM			
Registration (HART Communication Foundation)	Yes				
Pulse output or frequency ou	tput				
Output data	Pulse output: volume	flow, mass flow			
	Frequency output: volume flow, mass flow, diagnostic value, flow velocity, coil temperature, conductivity				
Function	Adjustable as pulse o	r frequency output			
Pulse rate/frequency	Adjustable final value	e: 0.0110000 pulse/s or Hz			
Settings	Pulses per volume or	Pulses per volume or mass unit or max. frequency for 100% flow			
	Pulse width: setting a	Pulse width: setting automatic, symmetric or fixed (0.052000 ms)			
Operating data	Basic I/O	Modular I/O	Exil/0		
Active		V_{nom} = 24 VDC f_{max} in operating menu set to $f_{max} \le 100$ Hz: $I \le 20$ mA open: $I \le 0.05$ mA closed: $V_{0, nom}$ = 24 V at $I = 20$ mA f_{max} in operating menu set to 100 Hz < $f_{max} \le 10$ kH. $I \le 20$ mA open: $I \le 0.05$ mA closed: $V_{0, nom}$ = 22.5 V at $I = 1$ mA $V_{0, nom}$ = 21.5 V at $I = 10$ mA $V_{0, nom}$ = 19 V	ıt		

Operating data	Basic I/O	Modular I/O	Exil/0	
Passive	V _{ext} ≤ 32 VDC	$V_{\text{ext}} \le 32 \text{VDC}$		
	f_{max} in operating menu set $I \le 100$ mA $R_{L, max} = 47 \text{ k}\Omega$ $R_{L, min} = (V_{ext} - V_0) / I_{max}$ open: $I \le 0.05$ mA at $V_{ext} = 32 \text{ VDC}$ closed: $V_{0, max} = 0.2 \text{ V}$ at $I \le 10$ mA	C		
	$\begin{aligned} &V_{0,\;max} = 2\;V\;at\;I \leq 100\;mA \\ &f_{max}\;in\;operating\;menu\;set\\ &I \leq 20\;mA \\ &R_{L,\;max} = 47\;k\Omega \\ &R_{L,\;min} = [V_{ext} - V_0]\;/\;I_{max} \\ &open:\\ &I \leq 0.05\;mA\;at\;V_{ext} = 32\;VDG \\ &closed:\\ &V_{0,\;max} = 1.5\;V\;at\;I \leq 1\;mA \\ &V_{0,\;max} = 2.5\;V\;at\;I \leq 20\;mA \end{aligned}$			
NAMUR	Any connection polarity.	Passive to IEC 60947-5-6	Passive to IEC 60947-5-6	
NAMOR		open: I _{nom} = 0.6 mA closed: I _{nom} = 3.8 mA Any connection polarity.	open: $I_{nom} = 0.43 \text{ mA}$ $closed: I_{nom} = 4.5 \text{ mA}$ $V_i = 30 \text{ V}$ $I_i = 100 \text{ mA}$ $P_i = 1 \text{ W}$ $C_i = 10 \text{ nF}$ $L_i \sim 0 \text{ mH}$	
Low flow cut-off		, , ,		
Function	Switching point and hysteresis separately adjustable for each output, counter and the display			
Switching point Hysteresis	Current output, frequency output: 020%; set in increments of 0.1 Pulse output: Unit is volume flow or mass flow and not limited			
Time constant				
Function	The time constant corresponds to the elapsed time until 63% of the end value has been reached according to a step function.			
Settings	Set in increments of 0.1 seconds.			
	0100 seconds			

Status output / limit switch							
Function and settings	Adjustable as automatic m	Adjustable as automatic measuring range conversion, display of flow direction, counter overflow, error, switching point or empty pipe detection					
	Valve control with activate	Valve control with activated dosing function					
	Status and/or control: ON	Status and/or control: ON or OFF					
Operating data	Basic I/O	Basic I/O Modular I/O					
Active	-	$V_{int} = 24 \text{ VDC}$ $I \le 20 \text{ mA}$ $open:$ $I \le 0.05 \text{ mA}$	-				
		closed: V _{0, nom} = 24 V at I = 20 mA Observe connection					
		polarity.					
Passive	V _{ext} ≤ 32 VDC	$V_{ext} = 32 VDC$	-				
	I ≤ 100 mA	I ≤ 100 mA					
	$R_{L, max} = 47 \text{ k}\Omega$ $R_{L, min} = (V_{ext} - V_0) / I_{max}$	$R_{L, max} = 47 k\Omega$ $R_{L, min} = (V_{ext} - V_0) / I_{max}$					
	open: I ≤ 0.05 mA at V _{ext} = 32 VDC	open: I \leq 0.05 mA at V _{ext} = 32 VDC					
	closed: $V_{0, \text{max}} = 0.2 \text{ V at}$ $I \le 10 \text{ mA}$ $V_{0, \text{max}} = 2 \text{ V at } I \le 100 \text{ mA}$	closed: $V_{0, \text{max}} = 0.2 \text{ V at}$ $I \le 10 \text{ mA}$ $V_{0, \text{max}} = 2 \text{ V at } I \le 100 \text{ mA}$					
	Any connection polarity.						
NAMUR	-	Passive to IEC 60947-5-6	Passive to IEC 60947-5-6				
		open: I _{nom} = 0.6 mA	open: I _{nom} = 0.43 mA				
		closed: I _{nom} = 3.8 mA	closed: I _{nom} = 4.5 mA				
			$V_i = 30 \text{ V}$ $I_i = 100 \text{ mA}$ $P_i = 1 \text{ W}$ $C_i = 10 \text{ nF}$ $L_i = 0 \text{ mH}$				
		Any connection polarity.					

Control input	11.11.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	(()	1 (11			
Function	counter and error reset, r	Hold value of the outputs (e.g. for cleaning work), set value of the outputs to "zero", counter and error reset, range change.				
	Start of dosing when dosi					
Operating data	Basic I/O	Modular I/O	ExiI/0			
Active	-	V _{int} = 24 VDC Ext. contact open: V _{0, nom} = 22 V	-			
		Ext. contact closed: I _{nom} = 4 mA				
		Contact closed (on): $V_0 \ge 12 \text{ V at I}_{nom} = 1.9 \text{ mA}$				
		Contact open (off): V ₀ ≤ 10 V at I _{nom} = 1.9 mA				
		Observe connection polarity.				
Passive	$8 \text{ V} \leq \text{V}_{\text{ext}} \leq 32 \text{ VDC}$	$3 \text{ V} \leq \text{V}_{\text{ext}} \leq 32 \text{ VDC}$	$V_{ext} \le 32 VDC$			
	$I_{max} = 6.5 \text{ mA at}$ $V_{ext} \le 24 \text{ VDC}$ $I_{max} = 8.2 \text{ mA at}$ $V_{ext} \le 32 \text{ VDC}$	$I_{max} = 9.5 \text{ mA at}$ $V_{ext} \le 24 \text{ V}$ $I_{max} = 9.5 \text{ mA at}$ $V_{ext} \le 32 \text{ V}$	$I \le 6 \text{ mA} \text{ at V}_{\text{ext}} = 24 \text{ V}$ $I \le 6.6 \text{ mA} \text{ at V}_{\text{ext}} = 32 \text{ V}$ On:			
	Contact closed (on):		$V_0 \ge 5.5 \text{V} \text{at I} \ge 4 \text{mA}$ Off: $V_0 \le 3.5 \text{V} \text{at I} \le 0.5 \text{mA}$			
	Contact open (off): $V_0 \le 2.5 \text{ V at}$ $I_{\text{nom}} = 0.4 \text{ mA}$	Contact open (off): $V_0 \le 2.5 \text{ V at}$ $I_{\text{nom}} = 1.9 \text{ mA}$	V _i = 30 V I _i = 100 mA P _i = 1 W C _i = 10 nF L _i = 0 mH			
	Any connection polarity.	Observe connection polarity.	Any connection polarity.			
NAMUR	-	Active to IEC 60947-5-6	-			
		Terminals open: V _{0, nom} = 8.7 V				
		Contact closed (on): V _{0, nom} = 6.3 V at I _{nom} > 1.9 mA				
		Contact open (off): V _{0, nom} = 6.3 V at I _{nom} < 1.9 mA				
		Detection of cable break: $V_0 \ge 8.1 \text{ V at I} \le 0.1 \text{ mA}$				
		Detection of cable short circuit: V ₀ ≤ 1.2 V at I ≥ 6.7 mA				
		Observe connection polarity.				

Current input					
Function	A connected extern to the current inpu	A connected external sensor delivers the values (temperature, pressure or c to the current input.			
Operating data	Basic I/O	Modular I/O	Ex i I/O		
Active	-	$V_{int, nom} = 24 \text{ VDC}$ $I \le 22 \text{ mA}$ $I_{max} \le 26 \text{ mA}$ (electronically limited) $V_{0, min} = 19 \text{ V at } I \le 22 \text{ mA}$ No HART®	$V_{int, nom} = 20 \text{ VDC}$ $I \le 22 \text{ mA}$ $V_{0, min} = 14 \text{ V at } I \le 22 \text{ mA}$ No HART® $V_{0} = 24.5 \text{ V}$ $I_{0} = 99 \text{ mA}$ $P_{0} = 0.6 \text{ W}$ $C_{0} = 75 \text{ nF} / L_{0} = 0.5 \text{ mH}$ No HART®		
		Observe connection polarity.	Any connection polarity.		
Passive	-	$V_{\rm ext} \le 32 \rm VDC$ $I \le 22 \rm mA$ $I_{\rm max} \le 26 \rm mA$ (electronically limited) $V_{0,\rm max} = 5 \rm V at I \le 22 mA$ No HART®	$V_{\text{ext}} \leq 32 \text{VDC}$ $I \leq 22 \text{mA}$ $V_{0, \text{max}} = 4 \text{V at } I \leq 22 \text{mA}$ $No \text{HART}^{\textcircled{\$}}$ $V_{i} = 30 \text{V}$ $I_{i} = 100 \text{mA}$ $P_{i} = 1 \text{W}$ $C_{i} = 10 \text{nF}$ $L_{i} = 0 \text{mH}$ $No \text{HART}^{\textcircled{\$}}$		
		Observe connection polarity.	Any connection polarity.		

PROFIBUS DP			
Description	Galvanically isolated according to IEC 61158		
	Profile version: 3.01		
	Automatic data transmission rate recognition (max. 12 MBaud)		
	Bus address adjustable via local display at the measuring device		
Function blocks	5 x analogue input (AI), 3 x totaliser		
Output data	Volume flow, mass flow, volume counter 1 + 2, mass counter, velocity, coil temperature, conductivity		
PROFIBUS PA			
Description	Galvanically isolated according to IEC 61158		
	Profile version: 3.01		
	Current consumption: 10.5 mA		
	Permissible bus voltage: 932 V; in Ex application: 924 V		
	Bus interface with integrated reverse polarity protection		
	Typical error current FDE (Fault Disconnection Electronic): 4.3 mA		
	Bus address adjustable via local display at the measuring device		
Function blocks	5 x analogue input (AI), 3 x totaliser		
Output data	Volume flow, mass flow, volume counter 1 + 2, mass counter, velocity, coil temperature, conductivity		
FOUNDATION Fieldbus			
Description	Galvanically isolated according to IEC 61158		
	Current consumption: 10.5 mA		
	Permissible bus voltage: 932 V; in Ex application: 924 V		
	Bus interface with integrated reverse polarity protection		
	Link Master function (LM) supported		
	Tested with Interoperable Test Kit (ITK) version 5.1		
Function blocks	3 x analogue input (AI), 2 x integrator, 1 x PID		
Output data	Volume flow, mass flow, velocity, coil temperature, conductivity, electronics temperature		
Modbus			
Description	Modbus RTU, Master / Slave, RS485		
Address range	1247		
Supported function codes	03, 04, 16		
Supported Baud rate	1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 Baud		
PROFINET IO			
Description	PROFINET IO is an Ethernet based communications protocol.		
	The device features two Ethernet ports with an integrated industrial Ethernet switch.		
	The Ethernet standard 100BASE-TX is supported.		
	Additionally, the PHYs support the following features: - Auto negotiation - Auto crossover - Auto polarity		
Output data	Volume flow, mass flow, volume counter, mass counter, velocity, coil temperature, conductivity		

Approvals and certificates

Declaration of conformity	This device fulfils the statutory requirements of the relevant directives and regulations. The manufacturer certifies successful testing of the product by applying the conformity mark.			
	For more information on the directives, regulations, standards and certifications, please refer to the declaration of conformity supplied with the device or downloadable from the manufacturer's website.			
Standard version	Non-Ex			
Hazardous areas (Original and latest certificates	s are available on the manufacturer website for download)			
Option (only C version)				
ATEX	OPTIFLUX 2300 C, 4300 C (FTZU 13 ATEX 0093X): II 2[1]G Ex db eb [ia Ga] mb IIC T6T3 Gb II 2[1]G Ex db eb [ia Ga] IIC T6T3 Gb II 2[1]G Ex db eb [ia Ga] q IIC T5T3 Gb II 2[1]G Ex db eb [ia Ga] q IIC T6T3 Gb II 2[1]G Ex db eb [ia Ga] IIC T6T3 Gb II 2[1]C Ex db eb [ia Ga] IIC T6T3 Gb II 2D Ex tb IIIC T85°CT150°C Db			
	OPTIFLUX 5300 C (KEMA 04 ATEX 2127 X): II 2 GD EEx dme [ia] IIC T6T3 T85°CT150°C II 2 GD EEx de [ia] IIC T6T3 T85°CT180°C II 2 GD EEx d [ia] IIC T6T3 T85°CT180°C II 2 (1) GD EEx dme [ia] IIC T6T3 T85°CT150°C II 2 (1) GD EEx de [ia] IIC T6T3 T85°CT180°C II 2 (1) GD EEx d [ia] IIC T6T3 T85°CT180°C			
	OPTIFLUX 6300 C (KEMA 05 ATEX 2214 X): II 2 GD EEx d mb e [ia] IIC T6T3 T150°C II 2(1) GD EEx d mb e [ia] IIC T6T3 T150°C			
	OPTIFLUX 7300 C (KEMA 10 ATEX 0105 X): II 2 G Ex d e mb IIC T6T4 II 2 (1) G Ex d e mb [ia] IIC T6T4 II 2 G Ex d mb IIC T6T4 II 2 G Ex d mb IIC T6T4 II 2(1) G Ex d mb [ia] IIC T6T4			
IECEx	OPTIFLUX 2300 C, 4300 C (IECEx FTZU 13.0003X): Ex db eb [ia Ga] mb IIC T6T3 Gb Ex db eb [ia Ga] q IIC T5T3 Gb Ex db eb [ia Ga] q IIC T5T3 Gb Ex db eb [ia Ga] q IIC T6T3 Gb Ex db eb [ia Ga] q IIC T6T3 Gb Ex db eb [ia Ga] IIC T6T3 Gb Ex tb IIIC T85°CT150°C Db			
NEPSI (China)	OPTIFLUX 2300 C, 4300 C (GYJ20.1341X): Ex d e ia mb IIC T3~T6 Gb Ex d e ia q IIC T3~T6 Gb Ex d e ia q IIC T3~T6 Gb Ex d e ia q IIC T3~T6 Gb Ex d e ia IIC T3~T6 Gb Ex tD A21 IP6X T85°C~T150°C			
IA (South-Africa)	OPTIFLUX 2300 C, 4300 C (S-XPL/081085 X): Ex dme [ia] IIC T6T3 Ex dqe [ia] IIC T6T3 DIP A21 T80°CT150°C			
	OPTIFLUX 5300 C (S-XPL/090219 X): Ex d [ia] IIC T6T3 Ex de [ia] IIC T6T3 Ex dme [ia] IIC T6T3 Ex de [ia] mb IIC T6T3			
	OPTIFLUX 6300 C (S-XPL/090221 X): Ex d mb e [ia] IIC T6T3			

DNV (Brazil)	OPTIFLUX 2300 C, 4300 C (DNV 12.0039 X): Ex db eb [ia Ga] IIC T6T3 Gb Ex db eb [ia Ga] mb IIC T6T3 Gb Ex db eb [ia Ga] q IIC T6T6 Gb Ex db eb [ia Ga] q T5T3 Gb
FM (USA)	OPTIFLUX 1300 C, 2300 C, 4300 C, 5300 C, 6300 C (FM 16 US 0329X): Class I, Division 2, Groups A,B,C,D Class II, Division 2, Groups F,G
CSA (Canada)	OPTIFLUX 1300 C, 2300 C, 4300 C, 5300 C, 6300 C (CSA 1665151): Class I, Division 2, Groups A,B,C,D Class II, Division 2, Groups F,G Class III, Division 2
QPS (USA & Canada)	OPTIFLUX 4300 C (QPS LR1338-10): Class I, Division 1, Groups BCD T6T3 Class II, Division 1, Groups EGF T6T3 Class III
KCS (Korea)	OPTIFLUX 2300 C (14-AV4BO-0737X): Ex de [ia] IIC T3T6 (14-AV4BO-0739X): Ex dqe [ia] IIC T3T6
	OPTIFLUX 4300 C [14-AV4BO-0734X]: Ex de [ia] IIC T3T6 [14-AV4BO-0735X]: Ex dme [ia] IIC T3T6 [14-AV4BO-0736X]: Ex dqe [ia] IIC T3T6
	OPTIFLUX 5300 C (14-AV4BO-0053X): Ex d [ia] IIC T6T3
	OPTIFLUX 7300 SW/C (14-AV4BO-0054X): Ex d [ia] IIC T6T3
PESO (India)	OPTIFLUX 2300 C, 4300 C (Approval no. A/P/HQ/MH/104/6207 (P444665)): Ex de eb [ia Ga] mb IIC T6T3 Gb Ex db eb [ia Ga] IIC T6T3 Gb Ex db eb [ia Ga] q IIC T5T3 Gb Ex db eb [ia Ga] q IIC T6T3 Gb
Option (only F version (except TIDA	ALFLUX 2000))
ATEX	IFC 300 F (FTZU 12 ATEX 0198X): II 2G Ex db eb [ia] IIC T6 Gb II 2(1)G Ex db eb [ia Ga] T6 Gb II 2D Ex tb IIIC T85°C Db
IECEx	IFC 300 F (IECEx FZTU 12.0023X): Ex db eb [ia] IIC T6 Gb Ex db eb [ia Ga] IIC T6 Gb Ex tb IIIC T85°C Db
NEPSI (China)	IFC 300 F (GYJ20.1343X): Ex d e [ia] IIC T6 Gb Ex d e [ia Ga] IIC T6 Gb Ex tD A21 [iaD] IP6X T85°C
IA (South-Africa)	IFC 300 F (S-XPL/090214): Ex de [ia] IIC T6
DNV (Brazil)	IFC 300 F (DNV 12.0044 X): Ex db eb [ia] IIC T6 Gb Ex db eb [ia Ga] IIC T6 Gb Ex tb IIIC T85°C Db, IP66/IP67, -40°C ≤ Ta ≤ +65°C (aluminum housing) -40°C ≤ Ta ≤ +60°C (stainless steel housing)
FM (USA)	IFC 300 F (FM 16 US 0329X): Class I, Division 2, Groups A,B,C,D Class II, Division 2, Groups E, F,G Class III, Division 2
CSA (Canada)	IFC 300 F (CSA 1665151): Class I, Division 2, Groups A,B,C,D Class II, Division 2, Groups F,G

KCS (Korea)	IFC 300 F (14-AV4B0-0748X): Ex de [ia] IIC T6			
PESO (India)	IFC 300 F (Approval no. A/P/HQ/MH/104/5640 (P398966)): Ex db e (ia Ga) IIC T6 Gb			
Option (only TIDALFLUX 2300 F)				
ATEX	TIDALFLUX 2300 F (DEKRA 12 ATEX 0235 X): IFC 300 F/PF: II 2G Ex d e [ia] IIC T6 Gb II 2(1)G Ex d e [ia] [ia Ga] IIC T6 Gb TIDALFLUX 2000: II 2G Ex d e ia q [ia] IIC T6 Gb II 2G Ex d e ia [ia] IIC T6 Gb			
IECEx	TIDALFLUX 2300 F (IECEx DEK 12.0079X): IFC 300 F/PF: Ex d e [ia] IIC T6 Gb Ex d e [ia] [ia Ga] IIC T6 Gb TIDALFLUX 2000: Ex d e ia q [ia] IIC T6 Gb Ex d e ia q [ia] IIC T6 Gb			
NEPSI (China)	IFC 300 F/PF [GYJ16.1307X]: Ex de [ia] IIC T6 Gb Ex de [ia Ga] IIC T6 Gb TIDALFLUX 2000 (GYJ16.1306X): Ex d e ia q IIC T6 Gb Ex d e ia q IIC T6 Gb			
QPS (USA & Canada)	TIDALFLUX 2300 F (QPS LR1338-8): IFC 300 F/PF: Class I, Zone 1, AEx db eb [ia Ga] IIC T6 Gb Class I, Division 2, Groups A,B,C,D T6 TIDALFLUX 2000: Class I, Zone 1, AEx db eb ia q [ia Ga] IIC T6 Gb Class I, Zone 1, AEx db eb ia [ia Ga] IIC T6 Gb Class I, Division 2, Groups A,B,C,D T6			
Custody transfer (except TIDALFL	UX 2000 & OPTIFLUX 7300 C)			
Standard version	Without			
Option	Cold drinking water (OIML R49-1, KIWA K618, MI-001, UKCA); liquids other than water (OIML R117-1, MI-005)			
Other standards and approvals				
Vibration and shock resistance	IEC 60068-2-34 Random vibration: f1 = 20 Hz, f2 = 2000 Hz; ASD = 0.01 g ² /Hz (rms a = 4.5 g), t = 90 minutes			
	IEC 60068-2-27 Shock: peak acceleration a = 30 g, half sine wave; duration: 18 ms, number of shocks: 5			
NAMUR	NE 21, NE 43, NE 53			
CSA OL	CLASS 2252 86, CLASS 2252 06			

Table 2-1: Technical data

2.2 Dimensions and weight

2.2.1 Housing

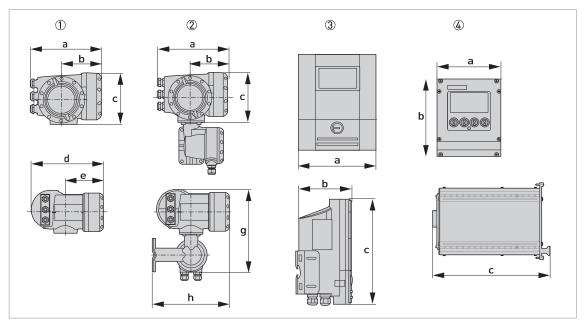


Figure 2-1: Dimensions of housing

- ① Compact version (C)
- ② Field housing (F) remote version
- 3 Wall-mounted housing (W) remote version
- 4 19" rack-mounted housing 21 TE (RL) remote version

Version	Dimensions [mm / inch]				Weight			
	а	b	С	d	е	g	h	[kg/lb]
C ①	202 / 7.95	120 / 4.75	155 / 6.1	260 / 10.2	137 / 5.4	-	-	4.2 / 9.3
F ②	202 / 7.95	120 / 4.75	155 / 6.1	-	-	295.8 / 11.6	277 / 10.9	5.7 / 12.6
W ③	198 / 7.8	138 / 5.4	299 / 11.8	-	-	-	-	2.4 / 5.3
RL ④	107 / 4.21 (21 TE)	129 / 5.08 (3 HE)	190 / 7.48	-	-	-	-	0.98 / 2.16

Table 2-2: Dimensions and weight

The weight of the field housing version in stainless steel is 13.5 kg / 29.8 lb.

The total dimensions and weight of the compact device are depending on the nominal diameter and the material of the flow sensor.

For detailed information please refer to the relevant flow sensor documentation.

2.2.2 Mounting plate of field housing

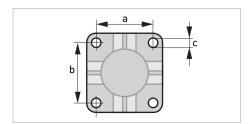


Figure 2-2: Dimensions for mounting plate of field housing

	[mm]	[inch]
a	72	2.8
b	72	2.8
С	Ø9	Ø0.4

Table 2-3: Dimensions in mm and inch

2.2.3 Mounting plate of wall-mounted housing

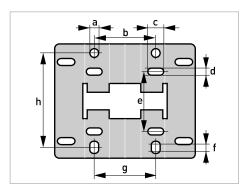


Figure 2-3: Dimensions of mounting plate of wall-mounted housing

	[mm]	[inch]
a	Ø9	Ø0.4
b	64	2.5
С	16	0.6
d	7	0.3
е	63	2.5
f	13	0.5
g	64	2.5
h	98	3.85

Table 2-4: Dimensions in mm and inch

2.3 Flow tables

		Q _{100 %} in m ³ /h			
v [m/s]	0.3	1	3	12	
DN [mm]	Minimum flow	Nomin	al flow	Maximum flow	
2.5	0.005	0.02	0.05	0.21	
4	0.01	0.05	0.14	0.54	
6	0.03	0.10	0.31	1.22	
10	0.08	0.28	0.85	3.39	
15	0.19	0.64	1.91	7.63	
20	0.34	1.13	3.39	13.57	
25	0.53	1.77	5.30	21.21	
32	0.87	2.90	8.69	34.74	
40	1.36	4.52	13.57	54.29	
50	2.12	7.07	21.21	84.82	
65	3.58	11.95	35.84	143.35	
80	5.43	18.10	54.29	217.15	
100	8.48	28.27	84.82	339.29	
125	13.25	44.18	132.54	530.15	
150	19.09	63.62	190.85	763.40	
200	33.93	113.10	339.30	1357.20	
250	53.01	176.71	530.13	2120.52	
300	76.34	254.47	763.41	3053.64	
350	103.91	346.36	1039.08	4156.32	
400	135.72	452.39	1357.17	5428.68	
450	171.77	572.51	1717.65	6870.60	
500	212.06	706.86	2120.58	8482.32	
600	305.37	1017.90	3053.70	12214.80	
700	415.62	1385.40	4156.20	16624.80	
800	542.88	1809.60	5428.80	21715.20	
900	687.06	2290.20	6870.60	27482.40	
1000	848.22	2827.40	8482.20	33928.80	
1200	1221.45	3421.20	12214.50	48858.00	
1400	1433.52	4778.40	14335.20	57340.80	
1600	2171.46	7238.20	21714.60	86858.40	
1800	2748.27	9160.9	27482.70	109930.80	
2000	3393.00	11310.00	33930.00	135720.00	
2200	4105.50	13685.00	41055.00	164220.00	
2400	4885.80	16286.00	48858.00	195432.00	
2600	5733.90	19113.00	57339.00	229356.00	
2800	6650.10	22167.00	66501.00	266004.00	
3000	7634.10	25447.00	76341.00	305364.00	

Table 2-5: Flow rate in m/s and m³/h

v [ft/s]	Q _{100 %} in US gallons/min				
	1	3.3	10	40	
NPS [inch]	Minimum flow	Nominal fl	Nominal flow		
1/10	0.02	0.09	0.23	0.93	
1/6	0.06	0.22	0.60	2.39	
1/4	0.13	0.44	1.34	5.38	
3/8	0.37	1.23	3.73	14.94	
1/2	0.84	2.82	8.40	33.61	
3/4	1.49	4.98	14.94	59.76	
1	2.33	7.79	23.34	93.36	
1.25	3.82	12.77	38.24	152.97	
1.5	5.98	19.90	59.75	239.02	
2	9.34	31.13	93.37	373.47	
2.5	15.78	52.61	159.79	631.16	
3	23.90	79.69	239.02	956.09	
4	37.35	124.47	373.46	1493.84	
5	58.35	194.48	583.24	2334.17	
6	84.03	279.97	840.29	3361.17	
8	149.39	497.92	1493.29	5975.57	
10	233.41	777.96	2334.09	9336.37	
12	336.12	1120.29	3361.19	13444.77	
14	457.59	1525.15	4574.93	18299.73	
16	597.54	1991.60	5975.44	23901.76	
18	756.26	2520.61	7562.58	30250.34	
20	933.86	3112.56	9336.63	37346.53	
24	1344.50	4481.22	13445.04	53780.15	
28	1829.92	6099.12	18299.20	73196.79	
32	2390.23	7966.64	23902.29	95609.15	
36	3025.03	10082.42	30250.34	121001.37	
40	3734.50	12447.09	37346.00	149384.01	
48	5377.88	17924.47	53778.83	215115.30	
56	6311.60	21038.46	63115.99	252463.94	
64	9560.65	31868.51	95606.51	382426.03	
72	12100.27	40333.83	121002.69	484010.75	
80	14938.92	49795.90	149389.29	597557.18	
88	18075.97	60252.63	180759.73	723038.90	
96	21511.53	71704.38	215115.30	860461.20	
104	25245.60	84151.16	252456.02	1009824.08	
112	29279.51	97597.39	292795.09	1171180.37	
120	33611.93	112038.64	336119.31	1344477.23	

Table 2-6: Flow rate in ft/s and US gallons/min

3.1 Intended use

The electromagnetic flowmeters are designed exclusively to measure the flow and conductivity of electrically conductive, liquid media.

For devices used in hazardous areas, additional safety notes apply; please refer to the Ex documentation.

If the device is not used according to the operating conditions (refer to chapter "Technical data"), the intended protection could be affected.

This device is a Group 1, Class A device as specified within CISPR11. It is intended for use in industrial environment. There may be potential difficulties in ensuring electromagnetic compatibility in other environments, due to conducted as well as radiated disturbances.

3.2 Installation specifications

The following precautions must be taken to ensure reliable installation.

- Make sure that there is adequate space to the sides.
- The device must not be heated by radiated heat to an electronics housing surface temperature above the maximum permissible ambient temperature.
 If it is necessary to prevent damage from heat sources, a heat protection (e.g. sun shade) has to be installed.
- Signal converters installed in control cabinets require adequate cooling, e.g. by fan or heat exchanger.
- Do not expose the signal converter to intense vibrations. The measuring devices are tested for a vibration level as described in the chapter "Technical data".
- Protect the device from excessive solar heat or UV light. Install an adequat protection (e.g. sun shade) to prevent damage to the housing and electronics.
- Avoid using high pressure jets close to the device. The measuring devices are tested for an ingress protection level as described in the chapter "Technical data".

3.3 Mounting of the compact version

Turning the housing of the compact version is not permitted.

The signal converter is mounted directly on the flow sensor. For installation of the flowmeter, please observe the instructions in the supplied product documentation for the flow sensor.

3.4 Mounting the field housing, remote version

Remarks for sanitary applications

- To prevent contamination and dirt deposits behind the mounting plate, a cover plug must be installed between the wall and the mounting plate.
- Pipe mounting is not suitable for sanitary applications!

Assembly materials and tools are not part of the delivery. Use the assembly materials and tools in compliance with the applicable occupational health and safety directives.

3.4.1 Pipe mounting

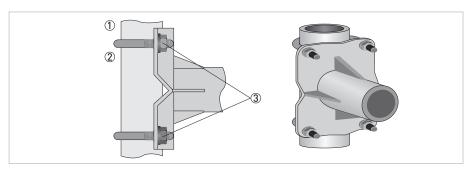


Figure 3-1: Pipe mounting of the field housing

- ① Fix the mounting bracket of the signal converter to the pipe.
- ② Fasten the mounting bracket of the signal converter using standard U-bolts and washers.
- 3 Tighten the nuts.

3.4.2 Wall mounting

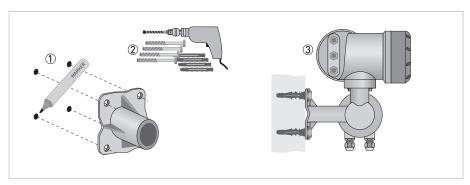


Figure 3-2: Wall mounting of the field housing

- ① Prepare the holes with the aid of the mounting plate. For further information refer to *Mounting plate of field housing* on page 25.
- ② Fasten the mounting plate securely to the wall.
- 3 Screw the mounting bracket of the signal converter to the mounting plate with the nuts and washers.

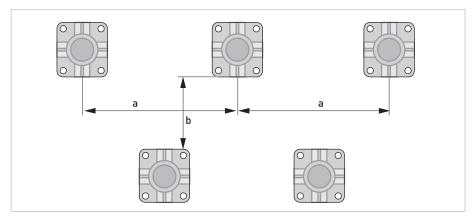


Figure 3-3: Mounting multiple devices next to each other

 $a \ge 600 \text{ mm} / 23.6$ "

b ≥ 250 mm / 9.8"

3.5 Mounting the wall-mounted housing, remote version

Assembly materials and tools are not part of the delivery. Use the assembly materials and tools in compliance with the applicable occupational health and safety directives.

3.5.1 Pipe mounting

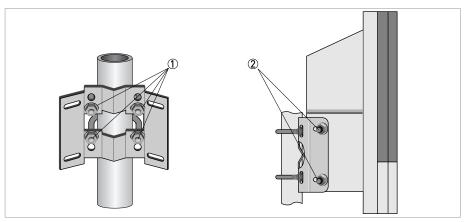


Figure 3-4: Pipe mounting of the wall-mounted housing

- ① Fasten the mounting plate to the pipe with standard U-bolts, washers and fastening nuts.
- ② Screw the signal converter to the mounting plate with the nuts and washers.

3.5.2 Wall mounting

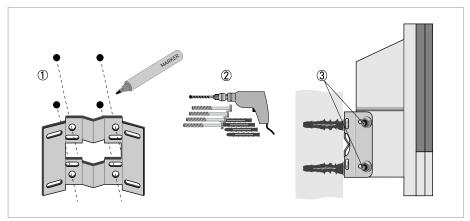


Figure 3-5: Wall mounting of the wall-mounted housing

- ① Prepare the holes with the aid of the mounting plate. For further information refer to *Mounting plate of wall-mounted housing* on page 25.
- ② Fasten the mounting plate securely to the wall.
- ③ Screw the signal converter to the mounting plate with the nuts and washers.

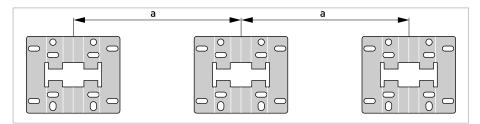


Figure 3-6: Mounting multiple devices next to each other

 $a \ge 240 \text{ mm} / 9.4$ "

4.1 Important notes on electrical connection

Electrical connection is carried out in conformity with the VDE 0100 directive "Regulations for electrical power installations with line voltages up to 1000 V" or equivalent national regulations.

The device must be grounded in accordance with regulations in order to protect personnel against electric shocks.

- Use suitable cable entries for the various electrical cables.
- The flow sensor and signal converter have been configured together at the factory. For this reason, please connect the devices in pairs. Ensure that the flow sensor constant GK/GKL (refer to nameplates) are identically set.
- If delivered separately or when installing devices that were not configured together, set the signal converter to the DN size and GK/GKL of the flow sensor.

4.2 Preparing the signal and field current cables (except TIDALFLUX)

Assembly materials and tools are not part of the delivery. Use the assembly materials and tools in compliance with the applicable occupational health and safety directives.

The electrical connection of the outer shield is different for the various housing variants. Please observe the corresponding instructions.

4.2.1 Signal cable A (type DS 300), construction

- Signal cable A is a double-shielded cable for signal transmission between the flow sensor and signal converter.
- Bending radius: ≥ 50 mm / 2"

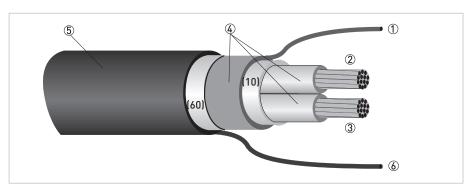


Figure 4-1: Construction of signal cable A (standard version)

- ① Stranded drain wire (1) for the inner shield (10), 1.0 mm² Cu / AWG 17 (not insulated, bare)
- ② Insulated wire (2), $0.5 \text{ mm}^2 \text{ Cu} / \text{AWG } 20$
- 3 Insulated wire (3), 0.5 mm² Cu / AWG 20
- 4 Insulation layers
- (5) Outer sheath
- 6 Stranded drain wire (6) for the outer shield (60)

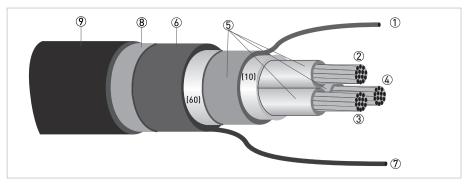


Figure 4-2: Construction of signal cable A (armoured version)

- ① Stranded drain wire (1) for the inner shield (10), 1.0 mm² Cu / AWG 17 (not insulated, bare)
- ② Insulated wire (2), 0.5 mm² Cu / AWG 20
- ③ Insulated wire (3), 0.5 mm² Cu / AWG 20
- 4 Insulated wire (4), 0.5 mm² Cu / AWG 20
- (5) Insulation layers
- 6 Outer sheath
- Tranded drain wire (6) for the outer shield (60)
- 8 Armoured braiding layer
- 9 Outer jacket

4.2.2 Length of signal cable A

For temperatures of the medium above 150°C / 300°F, a special signal cable and a ZD intermediate socket are necessary. These are available including the changed electrical connection diagrams. The minimal electrical conductivity depends on the type and length of the signal cable used.

Flow sensor	Nominal size		Min. electrical	Curve for signal
	DN [mm]	NPS [inch]	conductivity [µS/cm]	cable A
OPTIFLUX 1000 F	10150	3/86	5	A1
OPTIFLUX 2000 F	25150	16	5	A1
	2002000	880	5	A2
OPTIFLUX 4000 F	2.5150	1/106	1	A1
	2002000	880	1	A2
OPTIFLUX 5000 F	2.5100	1/104	1	A1
	150250	610	1	A2
OPTIFLUX 6000 F	2.5150	1/106	1	A1
WATERFLUX 3000 F	25600	124	20	A1
OPTIPROBE F	803200	3128	300	A1

Table 4-1: Length of signal cable A

The electrical conductivity for demineralised water is $\geq 20 \,\mu\text{S/cm}$.

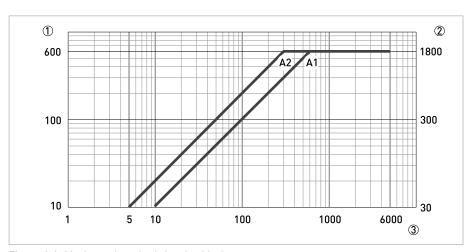


Figure 4-3: Maximum length of signal cable A

- ① Maximum length of signal cable A between the flow sensor and signal converter [m]
- 2 Maximum length of signal cable A between the flow sensor and signal converter [ft]
- 3 Electrical conductivity of the medium being measured [µS/cm]

4.2.3 Signal cable B (type BTS 300), construction

- Signal cable B is a triple-shielded cable for signal transmission between the flow sensor and signal converter.
- Bending radius: ≥ 50 mm / 2"

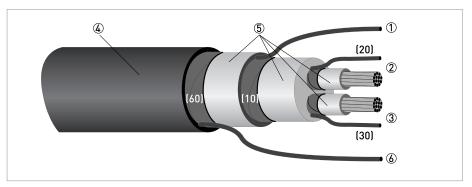


Figure 4-4: Construction of signal cable B

- ① Stranded drain wire for the inner shield (10), 1.0 mm² Cu / AWG 17 (not insulated, bare)
- ② Insulated wire (2), 0.5 mm² Cu / AWG 20 with stranded drain wire (20) of shield
- 4 Outer sheath
- ⑤ Insulation layers
- (6) Stranded drain wire (6) for the outer shield (60), 0.5 mm² Cu / AWG 20 (not insulated, bare)

4.2.4 Length of signal cable B

For temperatures of the medium above $150^{\circ}\text{C}/300^{\circ}\text{F}$, a special signal cable and a ZD intermediate socket are necessary. These are available including the changed electrical connection diagrams. The minimal electrical conductivity depends on the type and length of the signal cable used.

Flow sensor	Nominal siz	:e	Min. electrical	Curve for signal
	DN [mm]	NPS [inch]	conductivity [µS/cm]	cable B
OPTIFLUX 1000 F	10150	3/86	5	B2
OPTIFLUX 2000 F	25150	16	5	B3
	2002000	880	5	B4
OPTIFLUX 4000 F	2.515 (VN02)	1/101/2	10	B1
	10150	3/86	1	B3
	2002000	880	1	B4
OPTIFLUX 5000 F	2.5	1/10	10	B1
	415	1/61/2	5	B2
	25100	14	1	B3
	150250	610	1	B4
OPTIFLUX 6000 F	2.515	1/101/2	10	B1
	25150	16	1	B3
WATERFLUX 3000 F	25600	124	20	B1
OPTIPROBE F	803200	3128	300	B1

Table 4-2: Length of signal cable B

The electrical conductivity for demineralised water is $\geq 20 \,\mu\text{S/cm}$.

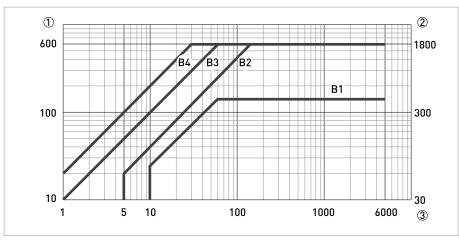


Figure 4-5: Maximum length of signal cable B

- ① Maximum length of signal cable B between the flow sensor and signal converter [m]
- ② Maximum length of signal cable B between the flow sensor and signal converter [ft]

4.3 Connecting the signal and field current cables (except TIDALFLUX)

Cables may only be connected when the power is switched off.

The device must be grounded in accordance with regulations in order to protect personnel against electric shocks.

For devices used in hazardous areas, additional safety notes apply; please refer to the Ex documentation.

Observe without fail the local occupational health and safety regulations. Any work done on the electrical components of the measuring device may only be carried out by properly trained specialists.

4.3.1 Connection diagram for flow sensor, field housing

The device must be grounded in accordance with regulations in order to protect personnel against electric shocks.

- If a shielded field current cable is used, the shield must NOT be connected in the housing of the signal converter.
- The outer shield of signal cable A or B in the signal converter housing is connected via the strain relief terminal.
- Bending radius of signal and field current cable: ≥ 50 mm / 2"
- The following illustration is schematic. The positions of the electrical connection terminals may vary depending on the housing version.

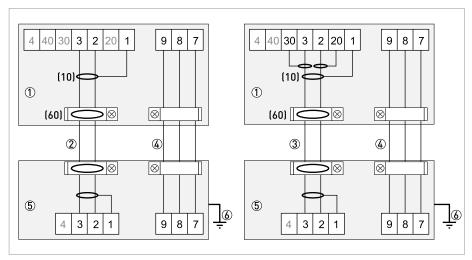


Figure 4-6: Connection diagram for flow sensor, field housing

- ① Electrical terminal compartment in housing of the signal converter for signal and field current cable
- ② Signal cable A (type DS 300)
- 3 Signal cable B (type BTS 300)
- 4 Field current cable C (type LiYCY)
- 5 Connection box of flow sensor
- 6 Functional ground FE
- (10) inner cable shield
- (60) outer cable shield

4.3.2 Connection diagram for flow sensor, wall-mounted housing

The device must be grounded in accordance with regulations in order to protect personnel against electric shocks.

- If a shielded field current cable is used, the shield must **NOT** be connected in the housing of the signal converter.
- The outer shield of the signal cable is connected in the signal converter housing via the stranded drain wire.
- Bending radius of signal and field current cable: ≥ 50 mm / 2"
- The following illustration is schematic. The positions of the electrical connection terminals may vary depending on the housing version.

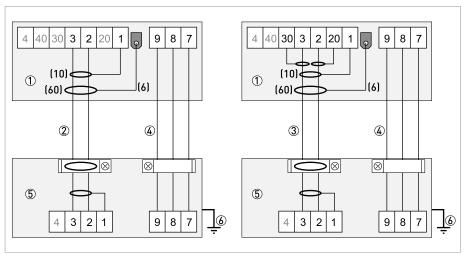


Figure 4-7: Connection diagram for flow sensor, wall-mounted housing

- ① Electrical terminal compartment in housing of the signal converter for signal and field current cable
- ② Signal cable A (type DS 300)
- ③ Signal cable B (type BTS 300)
- Field current cable C (type LiYCY)
- 5 Connection box of flow sensor
- 6 Functional ground FE
- (10) inner cable shield
- (60) outer cable shield
- (6) wire from outer cable shield

4.3.3 Connection diagram for flow sensor, 19" rack-mounted housing (21 TE)

The device must be grounded in accordance with regulations in order to protect personnel against electric shocks.

- If a shielded field current cable is used, the shield must **NOT** be connected in the housing of the signal converter.
- The outer shield of the signal cable is connected in the signal converter housing via the stranded drain wire.
- Bending radius of signal and field current cable: ≥ 50 mm / 2"
- The following illustration is schematic. The positions of the electrical connection terminals may vary depending on the housing version.

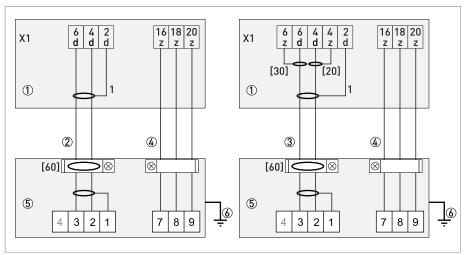


Figure 4-8: Connection diagram for flow sensor, 19" rack-mounted housing (21 TE)

- ① Electrical terminal compartment in housing of the signal converter for signal and field current cable
- ② Signal cable A (type DS 300)
- ③ Signal cable B (type BTS 300)
- Field current cable C (type LiYCY)
- 5 Connection box of flow sensor
- 6 Functional ground FE
- (20) wire 2 shield
- (30) wire 3 shield
- (60) outer cable shield

4.4 Electrical connection only for TIDALFLUX 2000

For the connection diagrams and all relevant details for connection of the TIDALFLUX 2000 please refer to the manual of the TIDALFLUX 2000.

4.5 Connecting power - all housing variants

The device must be grounded in accordance with regulations in order to protect personnel against electric shocks.

For devices used in hazardous areas, additional safety notes apply; please refer to the Ex documentation.

- The protection category depends on the housing versions (IP65...67 or NEMA4/4X/6).
- The housings of the devices, which are designed to protect the electronic equipment from
 dust and moisture, should be kept well closed at all times. Creepage distances and
 clearances are dimensioned to VDE 0110 and IEC 60664 for pollution severity 2.
 Supply circuits are designed for overvoltage category III and the output circuits for
 overvoltage category II.
- Fuse protection ($I_N \le 16$ A) for the infeed power circuit, as well as a separator (switch, circuit breaker) to isolate the signal converter should be provided for the device in accordance with applicable regulations. The separator must be marked as the separator for this device.

100...230 VAC (tolerance range: -15% / +10%)

- Note the power supply voltage and frequency (50...60 Hz) on the nameplate.
- The protective ground terminal **PE** of the power supply must be connected to the separate U-clamp terminal in the terminal compartment of the signal converter.

 For 19" rack-mounted housing please refer to the connection diagrams.

240 VAC + 5% is included in the tolerance range.

12...24 VDC (tolerance range for 24 VDC: -55% / +30%)

• Note the data on the nameplate!

12 VDC - 10% is included in the tolerance range.

24 VAC/DC (tolerance range: AC: -15% / +10%; DC: -25% / +30%)

- AC: Note the power supply voltage and frequency (50...60 Hz) on the nameplate.
- DC: Note the power supply voltage on the nameplate.

12 V is **not** included in the tolerance range.

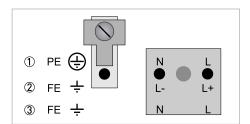


Figure 4-9: Power supply connection (excluding 19" rack-mounted housing)

- ① 100...230 VAC (-15% / +10%), 22 VA
- ② 24 VDC (-55% / +30%), 12 W
- ③ 24 VAC/DC (AC: -15% / +10%; DC: -25% / +30%), 22 VA or 12 W

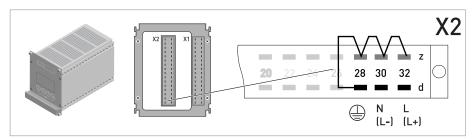


Figure 4-10: Power supply connection for rack-mounted housing (21 TE)

For safety reasons the manufacturer has connected the 28d contacts internally to the 28z, 30z and 32z contacts. You are advised to also connect contacts 28z, 30z and 32z to the external protective conductor.

The protective conductor contacts must not be used to loop through the PE connection.

4.6 Inputs and outputs, overview

4.6.1 Combinations of the inputs/outputs (I/Os)

This signal converter is available with various input/output combinations.

Basic version

- Has 1 current output, 1 pulse output and 2 status outputs / limit switches.
- The pulse output can be set as status output/limit switch and one of the status outputs as a control input.

Ex i version

- Depending on the task, the device can be configured with various output modules.
- · Current outputs can be active or passive.
- Optionally available also with Foundation Fieldbus and Profibus PA.

Modular version

• Depending on the task, the device can be configured with various output modules.

Bus systems

- The device allows intrinsically safe and non-intrinsically safe bus interfaces in combination with additional modules.
- For connection and operation of bus systems, please note the separate documentation.

Ex option

- For hazardous areas, all of the input/output variants for the compact and field (remote) housings with terminal compartment in the Ex d (pressure-resistant casing) or Ex e (increased safety) versions can be delivered.
- Please refer to the separate instructions for connection and operation of the Ex devices.

4.6.2 Description of the CG number

Figure 4-11: Marking (CG number) of the electronics module and input/output variants

- ① ID number: 0
- ② ID number: 0 = standard; 9 = special
- ③ Power supply option / flow sensor option
- Display (language versions)
- ⑤ Input/output version (I/O)
- 6 1st optional module for connection terminal A
- ② 2nd optional module for connection terminal B

The last 3 digits of the CG number (⑤ , ⑥ and ⑦) indicate the assignment of the terminal connections. Please refer to the following examples.

CG 300 11 100	100230 VAC & standard display; Basic I/O: I _a or I _p & S _p /C _p & S _p & P _p /S _p
CG 300 11 7FK	100230 VAC & standard display; Modular I/O: I_a & P_N/S_N and optional module P_N/S_N & C_N
CG 300 81 4EB	24 VDC & standard display; Modular I/0: I_a & P_a/S_a and optional module P_p/S_p & I_p

Table 4-3: Examples for CG number

Abbreviation	Identifier for CG no.	Description
la	Α	Active current output
Ip	В	Passive current output
P _a / S _a	С	Active pulse output, frequency output, status output or limit switch (changeable)
P _p / S _p	E	Passive pulse output, frequency output, status output or limit switch (changeable)
P _N / S _N	F	Passive pulse output, frequency output, status output or limit switch according to NAMUR (changeable)
C _a	G	Active control input
C _p	K	Passive control input
C _N	Н	Active control input to NAMUR Signal converter monitors cable breaks and short circuits according to IEC 60947-5-6.
IIn _a	Р	Active current input
lln _p	R	Passive current input
-	8	No additional module installed
-	0	No further module possible

Table 4-4: Description of abbreviations and CG identifier for possible optional modules on terminals A and B

4.6.3 Fixed, non-alterable input/output versions

This signal converter is available with various input/output combinations.

- The grey boxes in the tables denote unassigned or unused connection terminals.
- In the table, only the final digits of the CG no. are depicted.
- Connection terminal A+ is only operable in the basic input/output version.

CG no.	Connection terminals								
	A+	Α	Α-	В	B-	С	C-	D	D-

Basic I/O (standard)

100		I _p + HART®	passive $\textcircled{1}$	S _p / C _p passive ②	S _p passive	P _p / S _p passive ②
	I _a + HART®	active ①				

Ex i I/O (option)

200			I _a + HART [®] active	P _N / S _N NAMUR ②
3 0 0			I _p + HART [®] passive	P _N /S _N NAMUR ②
2 1 0	I _a active	P _N / S _N NAMUR C _p passive ②	I _a + HART [®] active	P _N / S _N NAMUR ②
3 1 0	I _a active	P _N / S _N NAMUR C _p passive ②	I _p + HART [®] passive	P _N /S _N NAMUR ②
2 2 0	I _p passive	P _N / S _N NAMUR C _p passive ②	I _a + HART [®] active	P _N /S _N NAMUR ②
3 2 0	I _p passive	P _N / S _N NAMUR C _p passive ②	I _p + HART [®] passive	P _N /S _N NAMUR ②
230	IIn _a active	P _N / S _N NAMUR C _p passive ②	I _a + HART [®] active	P _N /S _N NAMUR ②
3 3 0	IIn _a active	P _N / S _N NAMUR C _p passive ②	I _p + HART [®] passive	P _N /S _N NAMUR ②
2 4 0	IIn _p passive	P _N / S _N NAMUR C _p passive ②	I _a + HART [®] active	P _N /S _N NAMUR ②
3 4 0	IIn _p passive	P _N / S _N NAMUR C _p passive ②	I _p + HART [®] passive	P _N /S _N NAMUR ②

CG no.	Connection terminals								
	A+	Α	Α-	В	B-	С	C-	D	D-

PROFIBUS PA (Ex i) (option)

D 0 0				PA+	PA-	PA+	PA-
				FISCO Devi	ce	FISCO Device	
D 1 0		I _a active	P _N / S _N NAMUR	PA+	PA-	PA+	PA-
			C _p passive ②	FISCO Device		FISCO Device	
D 2 0		I _p passive	$\begin{array}{c} P_{N} / S_{N} \text{ NAMUR} \\ C_{p} \text{ passive } \textcircled{2} \end{array}$	PA+	PA-	PA+	PA-
				FISCO Device		FISCO Device	
D 3 0		IIn _a active	P _N / S _N NAMUR	PA+	PA-	PA+	PA-
			C _p passive ②	FISCO Device		FISCO Device	
D 4 0		IIn _p passive	P _N / S _N NAMUR	PA+	PA-	PA+	PA-
	C _p passive ②	C _p passive ②	FISCO Device		FISCO Device		

FOUNDATION Fieldbus (Ex i) (option)

E 0 0				V/D+	V/D-	V/D+	V/D-
				FISCO Devi	ce	FISCO Devi	ce
E 1 0	l _a active		P _N / S _N NAMUR	V/D+	V/D-	V/D+	V/D-
			C _p passive ②	FISCO Device		FISCO Device	
E 2 0	E 2 0 I _p passive	P _N / S _N NAMUR	V/D+	V/D-	V/D+	V/D-	
			C _p passive ②	FISCO Device		FISCO Device	
E 3 0		IIn _a active	P _N / S _N NAMUR	V/D+	V/D-	V/D+	V/D-
			C _p passive ②	FISCO Device		FISCO Device	
E 4 0			P _N / S _N NAMUR	V/D+	V/D-	V/D+	V/D-
			C _p passive ②	FISCO Device		FISCO Device	

PROFINET IO (option)

N 0 0	RX+	RX-	TX+	TX-	TX+	TX-	RX+	RX-
		Poi	lΖ			Po	rt 1	

Table 4-5: Fixed, non-alterable input/output versions

- ① Function changed by reconnecting
- 2 Changeable

4.6.4 Alterable input/output versions

This signal converter is available with various input/output combinations.

- The grey boxes in the tables denote unassigned or unused connection terminals.
- In the table, only the final digits of the CG no. are depicted.
- Term. = (connection) terminal

CG no.	Connection terminals								
	A+	A	A -	В	B-	С	C-	D	D-

Modular I/O (option)

4	max. 2 optional modules for term. A + B	I _a + HART [®] active	P _a / S _a active ①
8	max. 2 optional modules for term. A + B	I _p + HART [®] passive	P _a / S _a active ①
6	max. 2 optional modules for term. A + B	I _a + HART [®] active	P_p / S_p passive ①
B	max. 2 optional modules for term. A + B	I _p + HART [®] passive	P_p / S_p passive ①
7	max. 2 optional modules for term. A + B	I _a + HART [®] active	P _N / S _N NAMUR ①
C	max. 2 optional modules for term. A + B	I _p + HART [®] passive	P _N / S _N NAMUR ①

PROFIBUS PA (option)

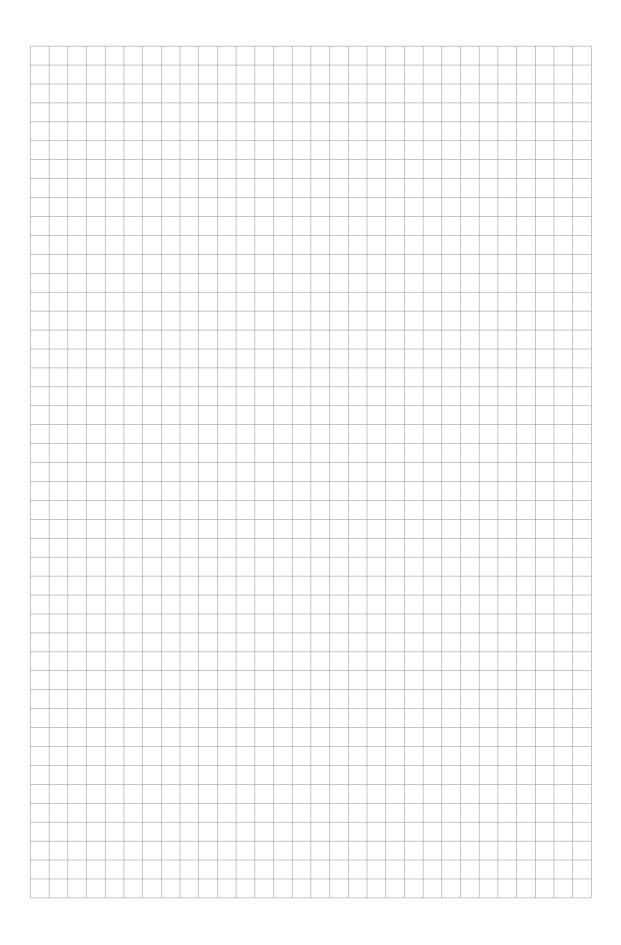
D		max. 2 optional modules for term. A + B	PA+ (2)	PA- (2)	PA+ (1)	PA- (1)	
---	--	---	---------	---------	---------	---------	--

FOUNDATION Fieldbus (option)

L	E		max. 2 optional modules for term. A + B	V/D+ (2)	V/D- (2)	V/D+ (1)	V/D- (1)
---	---	--	---	----------	----------	----------	----------

PROFIBUS DP (option)

F_0	1 optional module for term. A	Termina- tion P	RxD/TxD- P(2)	RxD/TxD- N(2)	Termina- tion N	RxD/TxD- P(1)	RxD/TxD- N(1)
-----	-------------------------------	--------------------	------------------	------------------	--------------------	------------------	------------------


Modbus (option)

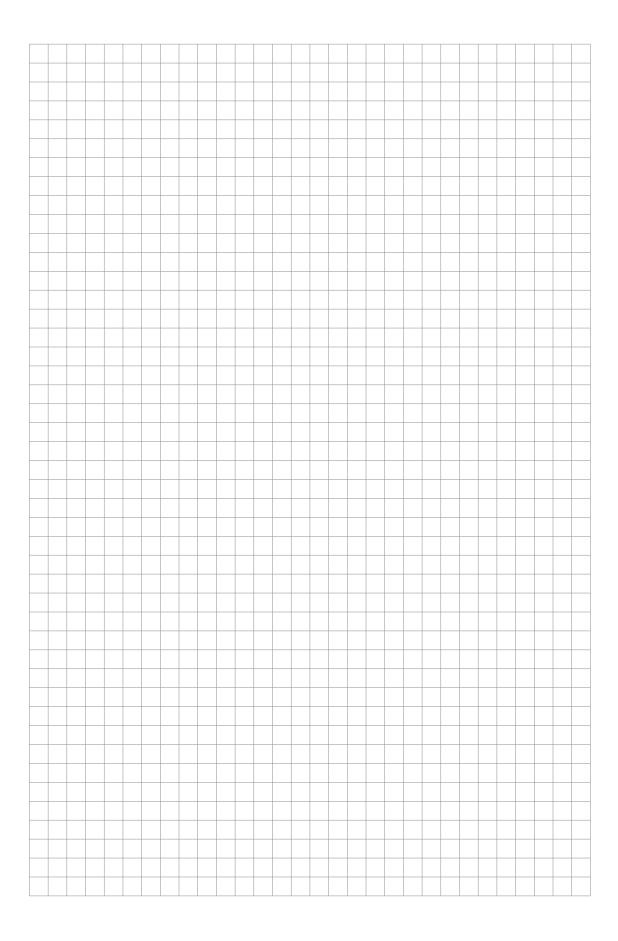
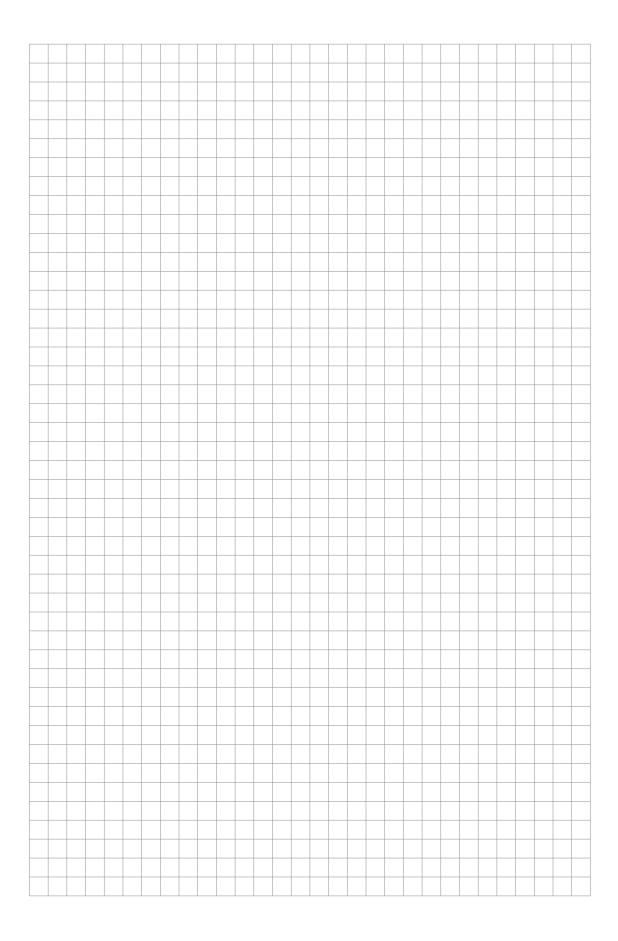

G ②	max. 2 optional modules for term. A + B	Common	Sign. B (D1)	Sign. A (D0)
H 3	max. 2 optional modules for term. A + B	Common	Sign. B (D1)	Sign. A (D0)

Table 4-6: Alterable input/output versions


- ① Changeable
- 2 Not activated bus terminator
- 3 Activated bus terminator

IFC 300 NOTES 5

IFC 300 NOTES 5

The specifications contained herein are subject to change without notice and any user of said specifications should verify from the manufacture that the specifications are currently in effect. Otherwise, the manufacturer assumes no responsibility for the use of specifications which may have been changed and are no longer in effect.

USA

1602 Wagner Avenue

1602 Wagner Avenue Erie, PA 16510 USA +1 814.898.5000

GuidantMeasurement.com

© 2025 Guidant Corporation All rights reserved.

Corporate Headquarters 5825 North Sam Parkway West Suite 120 Houston, TX 77086 USA Germany Regentstrasse 1 25474 Ellerbek, Germany +49 4101 304.0